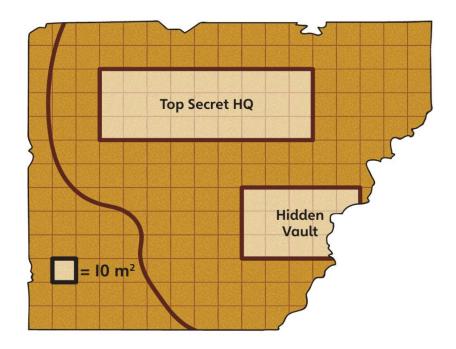
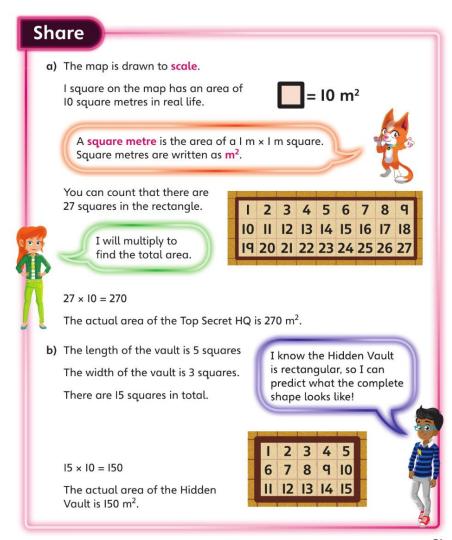
Contents

	1
Week I – Multiplication and division	4
Multiplying 2-digit numbers (I)	4
Multiplying 2-digit numbers (2)	8
Division with remainders	12
Area and perimeter	16
Calculating perimeter	16
Week 2 – Area and perimeter cont.	20
Calculating area	20
Fractions	24
Equivalent fractions	24
Converting improper fractions to mixed numbers	28
Comparing and ordering fractions	32
Week 3 - Fractions cont.	36
Adding and subtracting fractions with the same	
denominator	36
Adding fractions (I)	40
Adding fractions (2)	44
Subtracting fractions	48
Week 4 – Fractions cont.	52
Multiplying fractions (I)	52
Multiplying fractions (2)	56
Solving problems – fractions	60
Calculating fractions of amounts	64
Week 5 – Decimals and percentages	68
Decimals as fractions	68
Understanding thousandths	72
Rounding decimals	76
Ordering and comparing decimals	80

	This tells you which page you need.
	0
)	Fig. 1
)	
4	1
'	
3	
2	

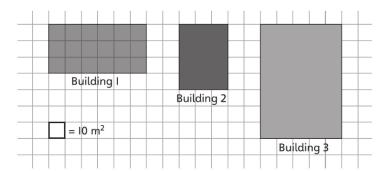

Week 6 – Decimals and percentages cont.	84
Understanding percentages	84
Percentages as fractions and decimals	88
Decimals	92
Adding and subtracting decimals (I)	92
Adding and subtracting decimals (2)	96
Week 7 – Decimals cont.	100
Adding and subtracting decimals (3)	100
Adding and subtracting decimals (4)	104
Multiplying decimals by I0, I00 and I,000	108
Dividing decimals by I0, I00 and I,000	112
Week 8 – Geometry – properties of shapes	116
Measuring with a protractor	116
Drawing lines and angles accurately	120
Calculating angles on a straight line	124
Calculating angles around a point	128
Week 9 – Geometry – properties of shapes cont.	132
Regular and irregular polygons	132
Reasoning about 3D shapes	136
Geometry – position and direction	140
Reflection with coordinates	140
Translation with coordinates	144
Week IO - Measure - converting units	148
Metric units	148
Imperial units of length	152
Converting units of time	156
Timetables	160
Answers to Practice questions	164

The first page of a lesson is a maths problem. Don't look at the next page until you have had a go! The third and fourth pages give you practice, so you can check your understanding.



Calculating area

Discover


- What is the actual area of the Top Secret HQ?
 - b) The Hidden Vault is rectangular. What is its actual area?

Lesson	1
--------	---

Calculating area

This map shows the location of three top secret buildings. They are all rectangles and are drawn to the same scale. Complete the calculations to show the actual area of each building.

a) Building I

The area of the building on the map is made up of squares.

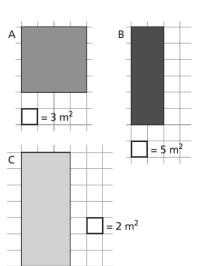
Each square is worth square metres.

b) Building 2

squares ×

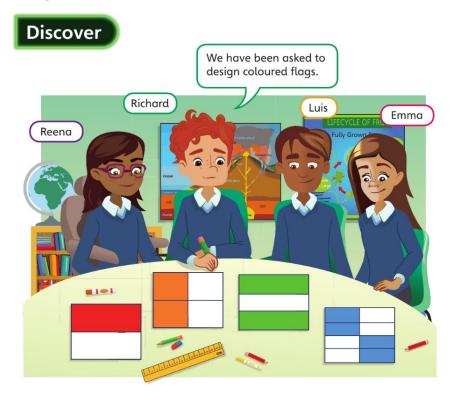
c) Building 3

squares ×

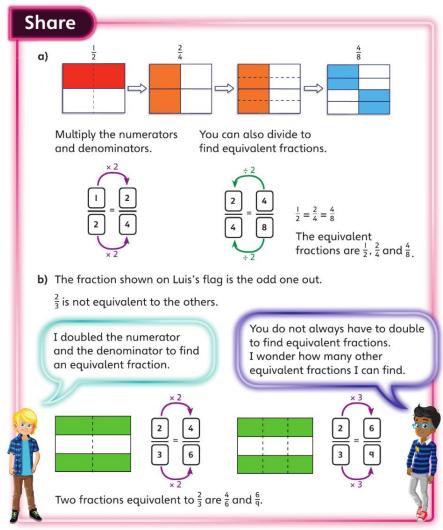

2 These rectangles all have different A scales.

> Calculate the areas and then order the shapes from smallest to largest area.

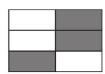
Smallest	Largest


- a) Draw a rectangle with an area of 8 squares.
- b) Complete the table based on your drawing.

If I square is equal to	the actual area is
I cm ²	cm ²
I m ²	
4 cm ²	
	72 m ²
	200 cm ²


- This rectangle has an area of 90 cm².
 - Explain how you know what each square is worth.

Equivalent fractions


- a) Which fractions are equivalent?
 - b) Which fraction is the odd one out? Create two different fractions that are equivalent to the odd one out.

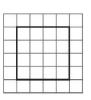
Equivalent fractions

a) Complete the equivalent fractions to match each diagram.

$$\frac{1}{2} = \frac{3}{2}$$

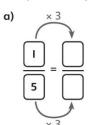
$$\frac{1}{2} = \frac{1}{2}$$

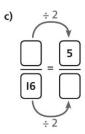
b) Draw lines on each diagram to show different fractions equivalent to $\frac{2}{3}$.

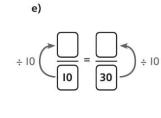

$$\frac{2}{3} = \frac{2}{3}$$

$$\frac{2}{3} = \frac{}{}$$

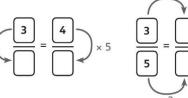
$$\frac{2}{3} = \frac{2}{3}$$

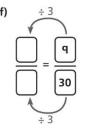

c) Shade the diagrams to match each fraction.





3 12


Complete the equivalent fractions.



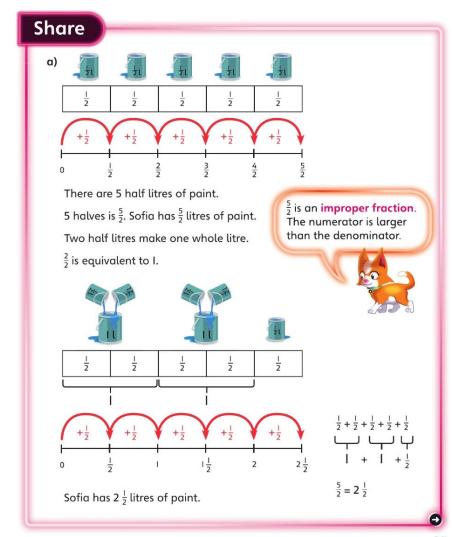
b)

Complete the different equivalent fractions for each fraction shown.

a)
$$\frac{80}{240} = \frac{8}{6} = \frac{200}{6}$$

b)
$$\frac{3}{12} = \frac{6}{32} = \frac{32}{32}$$

Ambika says, $\frac{3}{5} = \frac{7}{q}$ because the denominator is always two more than the numerator.'

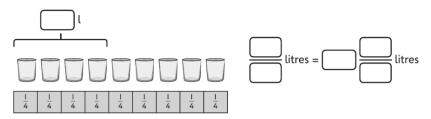

Is she correct? Use calculations or arrays to show your reasoning.

Converting improper fractions to mixed numbers

Discover



- a) Each can holds ½ litre of paint. How much paint does Sofia have in total?
 - b) Sofia buys another $\frac{1}{2}$ l can of paint. How much paint does she have now?



Converting improper fractions to mixed numbers

a) Each weight has a mass of $\frac{1}{2}$ kg. Write the total mass of the weights as a mixed number.

b) Each glass holds $\frac{1}{4}$ litre of juice. Write the total volume of juice as a mixed number.

c) Aki has $\frac{11}{3}$ metres of ribbon. Write this as a mixed number.

	(
$\frac{II}{3} = \boxed{}$	<u> </u>

2 Max has I5 quarter circles. He joins them together to make whole circles. Complete the statements.

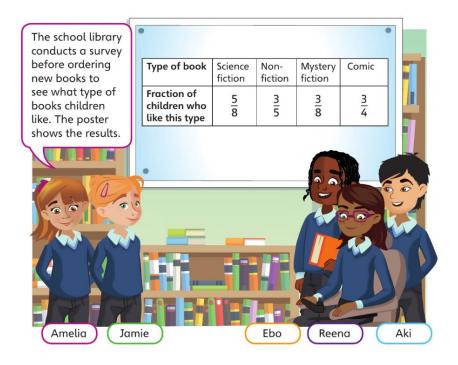
quarter	s make one whole circle.		
Max has 15	circles in total. That is	whole circle	!S

Convert these improper fractions to mixed numbers.

$a) \frac{13}{3} = $	d) $\frac{14}{5} = \frac{14}{1100}$
13	15

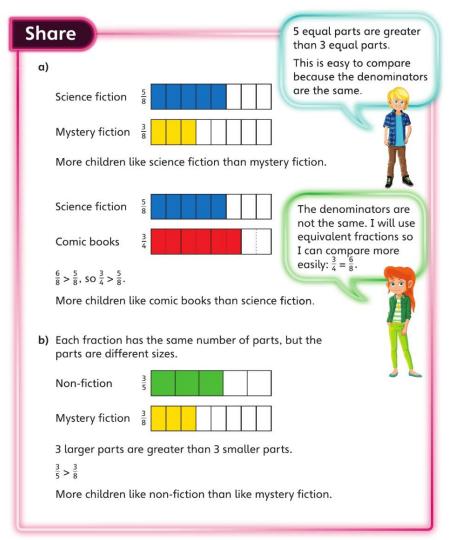
b)
$$\frac{13}{4} = \boxed{ }$$
e) $\frac{15}{5} = \boxed{ }$
f) $\frac{16}{5} = \boxed{ }$

4 Write these improper fractions as mixed numbers in different ways.


a)
$$\frac{14}{4} = \frac{2}{4} = \frac{2}{4}$$

b)
$$\frac{27}{6} = \frac{6}{6} = \frac{6}{6}$$

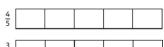
c)
$$\frac{40}{12} =$$


Comparing and ordering fractions

Discover

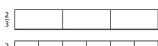
- a) Do more children like science fiction or mystery fiction?

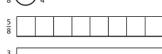
 Do more children like science fiction or comic books?
 - **b)** Do more children like non-fiction or mystery fiction?


Comparing and ordering fractions

Compare these fractions by completing the diagrams.

a)	$\frac{1}{6}$ $\frac{3}{6}$	
a)	$\frac{6}{1}$ $\frac{6}{3}$	


c) $\frac{4}{5}$


-			
,			

	-	\searrow
b)	$\frac{2}{3}$	<u>ءُ</u> (

2 Amelia and Max are running a race.

a) Amelia has completed $\frac{3}{10}$ of the track and Max has completed $\frac{2}{5}$. Who has run further?

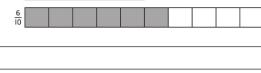
Amelia					

Max

_____ has run further.

b) Later, Max has completed $\frac{8}{10}$ and Amelia has completed $\frac{4}{5}$. Is one of them in the lead?

Write each set of fractions in order from largest to smallest.



Bella says, 'I used these diagrams to compare $\frac{4}{5}$ and $\frac{6}{10}$. It looks like $\frac{6}{10}$ is bigger.'

Explain her mistake.

5 Use each card once to complete all the statements correctly.

$$\frac{2}{5} > \frac{\boxed{}}{15}$$

$$\frac{1}{8} < \frac{1}{4}$$

$$\frac{6}{}$$
 $< \frac{3}{4}$

$$\frac{1}{18} < \frac{5}{18}$$