Contents

	4
Week I – Multiplication and division	4
Multiplying 2-digit numbers (I)	4
Multiplying 2-digit numbers (2)	8
Division with remainders	12
Area and perimeter	16
Calculating perimeter	16
Week 2 – Area and perimeter cont.	20
Calculating area	20
Fractions	24
Equivalent fractions	24
Converting improper fractions to mixed numbers	28
Comparing and ordering fractions	32
Week 3 - Fractions cont.	36
Adding and subtracting fractions with the same	
denominator	36
Adding fractions (I)	40
Adding fractions (2)	44
Subtracting fractions	48
Week 4 - Fractions cont.	52
Multiplying fractions (I)	52
Multiplying fractions (2)	56
Solving problems – fractions	60
Calculating fractions of amounts	64
Week 5 – Decimals and percentages	68
Decimals as fractions	68
Understanding thousandths	72
Rounding decimals	76
Ordering and comparing decimals	80

Week 6 – Decimals and percentages cont.	84
Understanding percentages	84
Percentages as fractions and decimals	88
Decimals	92
Adding and subtracting decimals (I)	92
Adding and subtracting decimals (2)	96
Week 7 – Decimals cont.	100
Adding and subtracting decimals (3)	100
Adding and subtracting decimals (4)	104
Multiplying decimals by 10, 100 and 1,000	108
Dividing decimals by I0, I00 and I,000	II2
Week 8 – Geometry – properties of shapes	116
Measuring with a protractor	116
Drawing lines and angles accurately	120
Calculating angles on a straight line	124
Calculating angles around a point	128
Week 9 – Geometry – properties of shapes cont.	132
Regular and irregular polygons	132
Reasoning about 3D shapes	136
Geometry – position and direction	140
Reflection with coordinates	140
Translation with coordinates	144
Week IO – Measure – converting units	148
Metric units	148
Imperial units of length	152
Converting units of time	156
Timetables	160
Answers to Practice questions	164

The first page of a lesson is a maths problem. Don't look at the next page until you have had a go! The third and fourth pages give you practice, so you can check your understanding.

Decimals as fractions

Discover

- **1** a) Where is Sofia on the route planner? Find the location on the route planner, and describe it as a fraction of a kilometre.
 - b) After I5 minutes Sofia has run I·5 km. Locate her position on the route planner, and describe it as a fraction.

Decimals as fractions

(I) a) Write each number as a fraction.

b) Explain why C can be written as two different fractions.

2 Draw place value counters to represent each number.

 $\frac{4}{10}$

	,
- 1	4
	10

0	•	Tth
	•	

0	•	Tth

 $2\frac{3}{4}$

0	•	Tth	Hth

 $1\frac{1}{4}$

Here are the results from a long jump competition. Mark each distance jumped on the number line.

Child	Distance jumped
Jamie	I∙25 m
Aki	0·75 m
Ambika	I 3/4 m
Richard	I ½ m

Explain your method.

4 Convert the fractions to decimals and the decimals to fractions.

a)
$$\frac{1}{4} = \boxed{}$$

g)
$$0.3 = \frac{10}{10}$$

b)
$$\frac{2}{4} = \bigcirc$$

h)
$$\frac{3}{2} =$$

c)
$$\frac{3}{4} = \bigcirc$$

d)
$$\frac{4}{4} = \boxed{}$$

e)
$$\frac{6}{4} = \bigcirc$$

k)
$$=\frac{3}{3}$$

f)
$$\frac{8}{4} = \bigcirc$$

Understanding thousandths

Discover

- a) A fraction has been shaded in each of the three diagrams. Write each as a fraction and as a decimal.
 - b) Jamilla shades each diagram to show 0.5.

Write this as $\frac{1}{10}$, $\frac{1}{100}$ and $\frac{1}{1,000}$.

Share

- a) Each grid represents a whole.
 - The whole is split into 10 equal parts. Each part is $\frac{1}{10}$.

$$\frac{1}{10} = 0.1$$

Now each tenth is split into IO equal parts. There are 100 equal parts. Each part is $\frac{1}{100}$.

$$\frac{1}{100} = 0.01$$

Now each hundredth is split into 10 equal parts. There are 1,000 equal parts.

Each part is
$$\frac{1}{1,000}$$
.

$$\frac{1}{1.000} = 0.001$$

b) 0.5 is equivalent to $\frac{1}{2}$.

 $0.5 = \frac{5}{10}$

 $0.5 = \frac{50}{100}$

Understanding thousandths

Write the numbers as both decimals and fractions.

a)
$$0 \cdot \bigcirc = \boxed{0}$$

b)
$$0 \cdot \bigcirc = \frac{1,000}{1,000}$$

Shade to show these fractions and decimals.

$$\frac{50}{1,000} = \frac{100}{100} = 0.05$$

$$\frac{1,000}{1,000} = \frac{100}{100} = \frac{10}{10} = 0.9$$

3 Complete the table.

Decimal	0.002		0.251		0.2
Fraction		<u>20</u> I,000	1,000	250 1,000	1,000

Decimal			1-251	I·25	0.000
Fraction	1,000 1,000	1,001 1,000	1,000	1 1,000	1,000

4 Alex shades in $\frac{1}{10}$ of her diagram. She writes:

$$0.1 = 0.10 = 0.100$$

Find equivalent ways of writing:

b) 0.07

Rounding decimals

Discover

- a) Do you agree with Jen that all of the boxes weigh approximately 9 kg? Round each weight to the nearest whole number.
 - b) A fifth box rounds to 9 kg. What could it weigh?

Lesson 3	
Rounding decimals	J
Draw an arrow to show where each number line.	h number should be placed on the
0·9 I·3 0·87 0·5	I·75
	2
b) Now round each number to the ne	arest whole number.
0∙9 rounds to the neares	t whole number.
I⋅3 rounds to the nearest	whole number.
0.87 rounds to the neare	est whole number.
0·5 rounds to the neares	t whole number.
I-75 rounds to the neares	st whole number.
Measure each line. Give the answer as rounded to the nearest centimetre.	s an exact decimal, and then
One has been done for you.	
2·3 cm rour	nds to 2 cm.
	cm rounds to cm.
	cm rounds to cm.
	cm rounds to cm.

cm rounds to

	a) 5·23 roun	ow you can round 5·23 to the r	5·3		
	Which digit do you need to look at?				
)	Complete the	e table.			
	Number	Rounded to nearest whole number	Rounded to the nearest tenth		
	1-19				
	10-19				
	0.75				
	100.75				

)	Mia has to round 2·76 to one decimal place. She says, 'The hundredths digit is greater than five, so the tenths digit increases by I. The answer is 2·86'.		
	How you could explain the mistake to her?		

100·03 100·037

Ordering and comparing decimals

- Order the results from smallest to largest. Who had the quickest reaction time?
 - b) Convert the decimals to fractions. Use this to check the comparison made in a).

Share

- a) The reaction times to compare have digits in the tenths column.
 - 5.9 has the fewest ones, so this is the smallest.
 - 6.2 and 6.5 have the same number of ones, so we look at the tenths.

0	•	Tth
5	٠	q
6	•	2
6	•	5

6.2 has the fewest tenths, so this is the next smallest number.

5.9 cm < 6.2 cm < 6.5 cm

The shorter the distance the quicker reaction speed.

I will use a number line to help me compare.

Emma's result was the shortest distance, so she has the quickest reaction time.

$$6.5 = 6 \frac{5}{10} = \frac{65}{10}$$
.
That is 65 tenths.

$$5.9 = 5 \frac{9}{10} = \frac{59}{10}$$
.
That is 59 tenths.

59 tenths is less than 62 tenths which is less than 65 tenths. 59 < 62 < 65

Lesson 4		

Ordering and comparing decimals

Omplete the sentences to describe the representations using **less** or **greater**.

0·7 is _____ than 0·

_		_	_	
ſ].[lis	than].[
ı	11	1.0		11

Complete the shading so that the inequality is correct.

3 Jamilla rates these dinosaurs for fierceness.

is greater than

Sort the list into order, starting with least fierce.

Dinosaur	Fierceness (0 is not fierce, 10 is the most fierce)
Brachiosaurus	4.607
Triceratops	8-925
T-Rex	q·525
Stegosaurus	8-923
Spinosaurus	9.519

Order (Ist is least fierce, 5th is most fierce)	Dinosaur
Ist	
2nd	
3rd	
4th	
5th	

4 Complete using <, > and =.

 $0.255 \bigcirc \frac{251}{1,000}$

100·I P80·0

 $\frac{980}{1,000} \bigcirc \frac{97}{100}$