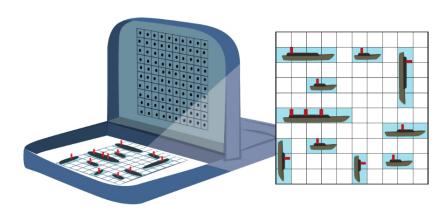
Contents

	4
Week I – Multiplication and division	4
Multiplying 2-digit numbers (I)	4
Multiplying 2-digit numbers (2)	8
Division with remainders	12
Area and perimeter	16
Calculating perimeter	16
Week 2 – Area and perimeter cont.	20
Calculating area	20
Fractions	24
Equivalent fractions	24
Converting improper fractions to mixed numbers	28
Comparing and ordering fractions	32
Week 3 - Fractions cont.	36
Adding and subtracting fractions with the same	
denominator	36
Adding fractions (I)	40
Adding fractions (2)	44
Subtracting fractions	48
Week 4 - Fractions cont.	52
Multiplying fractions (I)	52
Multiplying fractions (2)	56
Solving problems – fractions	60
Calculating fractions of amounts	64
Week 5 – Decimals and percentages	68
Decimals as fractions	68
Understanding thousandths	72
Rounding decimals	76
Ordering and comparing decimals	80

$\overline{}$	This tells you which page you need.
G. C.	


Week 6 – Decimals and percentages cont.	84
Understanding percentages	84
Percentages as fractions and decimals	88
Decimals	92
Adding and subtracting decimals (I)	92
Adding and subtracting decimals (2)	96
Week 7 - Decimals cont.	100
Adding and subtracting decimals (3)	100
Adding and subtracting decimals (4)	104
Multiplying decimals by I0, I00 and I,000	108
Dividing decimals by I0, I00 and I,000	112
Week 8 – Geometry – properties of shapes	116
Measuring with a protractor	116
Drawing lines and angles accurately	120
Calculating angles on a straight line	124
Calculating angles around a point	128
Week 9 – Geometry – properties of shapes cont.	132
Regular and irregular polygons	132
Reasoning about 3D shapes	136
Geometry – position and direction	140
Reflection with coordinates	140
Translation with coordinates	144
Week IO – Measure – converting units	148
Metric units	148
Imperial units of length	152
Converting units of time	156
Timetables	160
Answers to Practice questions	164

The first page of a lesson is a maths problem. Don't look at the next page until you have had a go! The third and fourth pages give you practice, so you can check your understanding.

Understanding percentages

Discover

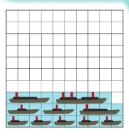
- Reena has placed her ships on the grid.
 How much of the grid is covered?
 How much of the grid is empty?
 - b) She removes these two ships.
 Now how much of the grid is covered and how much is empty?

Share

a) The grid is 10 rows of 10 squares.

$$10 \times 10 = 100$$

There are 100 squares in total.


The ships cover 29 out of 100 squares.

$$100 - 29 = 71$$

So 71 squares out of 100 are not covered.

Per cent (%) means 'parts out of 100'. So I per cent means I part out of 100 or $\frac{1}{100}$. 10 per cent means I0 parts out of 100 or $\frac{10}{100}$.

I moved the ships side by side to make it easier to work out.

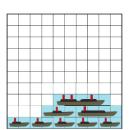
Percentages can describe this situation.

29% of the grid is covered.

71% of the grid is empty.

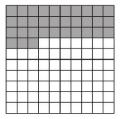
b) The two ships covered 4 + 3 = 7 squares.

$$29 - 7 = 22$$

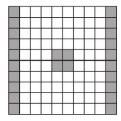

So now only 22 out of 100 are covered.

22% of the grid is covered.

$$100 - 22 = 78$$


So now 78 out of 100 squares are uncovered.

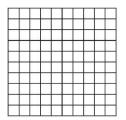
78% of the grid is empty.



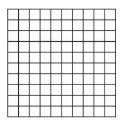
Understanding percentages

How much of each grid is shaded?

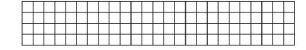
a) out of 100 are shaded.

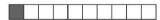


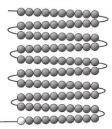
out of are shaded.

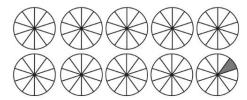

That is 9

Shade each grid as indicated.


a) Shade 4 out of 100.


b) Shade 96%.




c) Shade 24%.

3 Circle diagrams that represent I%.

There are 100 children in a school. Olivia carries out a survey amongst the children to find out what they wear to school on rainy days.

 Item
 Tally
 Total

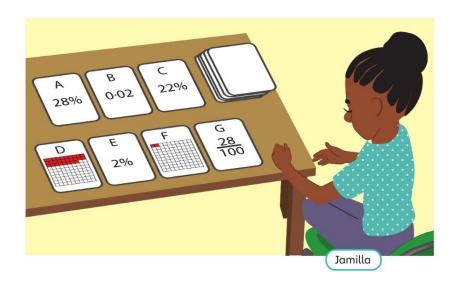
 wellies
 ## ## ## ## ## ## | 61

 ## ## ## ## ## ## | 51

 scarf
 ## ## ## ## ## | 51

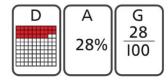
 ## ## ## ## ## ##

6I + 5I = II2. So II2% of the children wear wellies or scarves.


Olivia

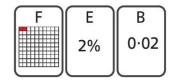
Do you agree with Olivia? What percentages can you say for certain about the children?

Percentages as fractions and decimals


Discover

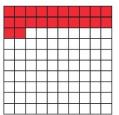
- a) Find two sets of three matching cards.
 - b) Write a fraction and draw a diagram to match the remaining card.

Share


a) Card D shows 28 squares shaded out of 100. This can be written as 28% (Card A) and as $\frac{28}{100}$ (Card G).

I will start with the diagram cards.

Each shows 100 equal parts. This represents hundredths.


Card F shows 2 squares shaded out of I00. This can be written as 2% (Card E) and as $\frac{2}{100} \cdot \frac{2}{100}$ is the 2 hundredths which is equivalent to the decimal 0·02 (Card B).

b) The remaining card is Card C, which shows 22%.

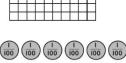
22% is 22 equal parts out of 100 and so can be written as $\frac{22}{100}$.

This can be represented on a hundredths grid like this:

We can say $22\% = \frac{22}{100}$. The percentage and the fraction are equivalent.

Percentages as fractions and decimals

Match each diagram to its equivalent fractions, decimals and percentages.


Each diagram will match two fractions, decimals or percentages.

0.31

33%

33

0.13

3%

0.03

13%

0	•	Tth	Hth
0	•	3	3

31%

2 Complete the place value grid to represent the fraction. Then write the equivalent decimal and percentage.

32 100

0	•	Tth	Hth
	•		

 $\frac{32}{100}$ as a decimal is

22				. 1		
100	as	a	percentage	IS		%
100						

3 Complete the table to show equivalent decimals, fractions and percentages.

Fraction	Decimal	Percentage
48 100		
		99%
	0.01	

4 Fill in the missing digits.

a)
$$\frac{3}{100} = 0.53 = 5$$
 %

c)
$$2\% = \frac{2}{100} = 0.9$$

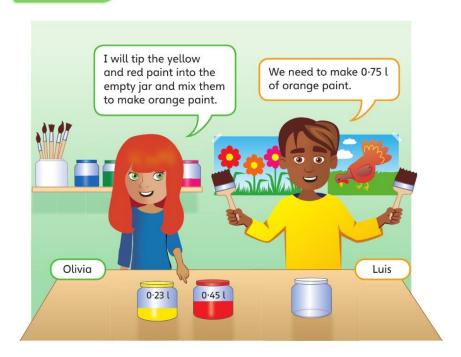
b)
$$0.3$$
 = $\frac{5}{100}$ = $\frac{\%}{100}$

d)
$$0.7$$
 = $\frac{8}{100}$ = $\frac{8}{100}$

5 Arrange these numbers in order from least to greatest value.

88% 0.8 0.18 $\frac{81}{100}$

st _____ Greatest


6 Draw arrows to mark each number on the number line.

25%

100%

Adding and subtracting decimals

Discover

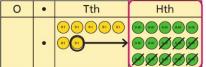
- a) How much orange paint can Olivia and Luis make?
 - b) How much more orange paint do they need to make?

Share

a) Olivia and Luis can add 0·23 l of yellow paint to 0·45 l of red paint.

0	•	Tth	Hth
	•	01 01	0.01 0.01
	•	01 01 01 01	0.01 0.01 0.01 0.01

O · Tth Hth


0 · 2 3

+ 0 · 4 5

0 · 6 8

0.23 + 0.45 = 0.68 Olivia and Luis can make 0.68 l of orange paint.

b) A subtraction will show how much more orange paint they need to make.

O · Tth Hth

0 · ⁶7 | ⁵

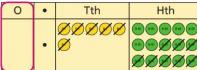
- 0 · 6 | 8

· 7

First, exchange I tenth for IO hundredths. Then, subtract the hundredths.

I used column addition, just like when adding whole numbers.

O · Tth Hth


0 · 67 | 5

- 0 · 6 | 8

0 · 0 | 7

Subtract the tenths.

0.75 - 0.68 = 0.07 l

O · Tth Hth 0 · ⁶7 · ¹5 - 0 · 6 8 0 · 0 7

Olivia and Luis need to make 0.07 l more orange paint.

Adding and subtracting decimals **1**

Mo adds different amounts of water and orange to make orange squash. Complete the additions.

a) 0.36 l + 0.22 l =

0	•	Tth	Hth
	•	01 01 01	001 001 001 001
	•	01 01	0.01

+ 0 · 2 2

b) 0.25 l + 0.47 l =

0	•	Tth	Hth
	•	01 01	001 001 001 001
	•	01 01 01 01	

c) 0.55 + 0.31 =

d) 0.38 + 0.38 =

- 2 Kate works out 0.05 + 0.12 as a column addition. Explain Kate's mistake.

7.0	O	Tth	Hth		
	0	5			
+	0	1	2		
	0	6	2		

A running race is 0.65 km long. Lee runs 0.34 km. How far is left to run?

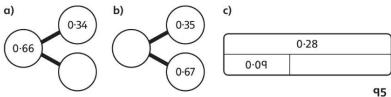
0.65 km - 0.34 km =

0	•	Tth	Hth
	•	01 01 01 01	001 001 001 001

	0	•	Tth	Hth
3,7	0		6	5
-	0	•	3	4
- 67			5	

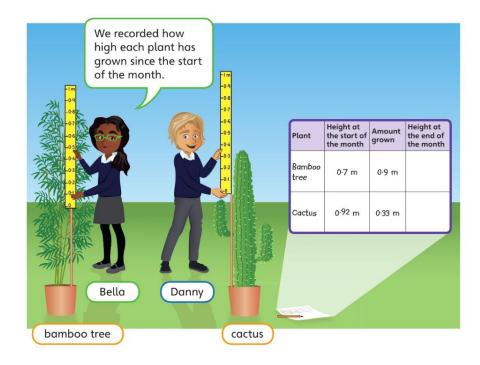
Complete the subtractions.

c) 0.71 - 0.24 =


b) 0.49 - 0.19 =

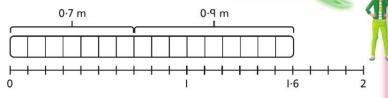
61	0	•	Tth	Hth
	0	٠	4	q
-	0	•	1	q
_		•		

d) 0.60 - 0.45 =



Complete the missing numbers in these models.

Adding and subtracting decimals 2


Discover

- a) What is the height of each plant at the end of the month?
 - b) How much taller than the cactus is the bamboo tree?

Share

 a) At the start of the month the bamboo tree was 0.7 m tall.
 It grows by 0.9 m. We need to add 0.7 and 0.9. I used a number line to help me work out the height of the bamboo tree.

0.7 + 0.9 = 1.6. At the end of the month the height of the bamboo tree is 1.6 m.

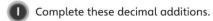
The cactus is 0.92 m tall at the start of the month. It grows by 0.33 m.

We need to add 0.33 to 0.92.

0	•	Tth	Hth
	•	01 01 01 01	000
	·	01 01 01	000 000 000

	0	•	Tth	Hth
	0		q	2
+	0		3	3
-	1		2	5

0.92 + 0.33 = 1.25


At the end of the month the height of the cactus is I-25 m.

I used column addition to add 0.92 and 0.33.

When I added the tenths, I got I2 tenths. This is the same as I whole and 2 tenths.

Adding and subtracting decimals 2

0	•	Tth	Hth
	•	01 01 01	031 031 041 041 041
	•	01 01 01 01 01	0 01 0 01

0	•	Tth	Hth	Thth
	•	01 01 01 01 01		(CO) (CO) (CO) (CO) (CO) (CO) (CO) (CO)
	•	01 01 01 01	001 001	0001

d)
$$0.7 + 0.7 =$$

Match each calculation with its answer.

1.39	

1.28

3 How much do the ruler and eraser cost altogether?

The ruler and eraser cost £ altogether.

4 Amal uses the treadmill at the gym.

He thinks he ran further on Thursday than he did from Monday to Wednesday in total. Is Amal correct?

Day	Distance
Monday	0·625 km
Tuesday	0·193 km
Wednesday	0·208 km
Thursday	I·25 km