Contents

	1
Week I - Fractions	4
Simplifying fractions	4
Comparing and ordering fractions	8
Adding and subtracting fractions (I)	12
Adding and subtracting fractions (2)	16
Week 2 - Fractions cont.	20
Multiplying a fraction by a whole number	20
Multiplying a fraction by a fraction	24
Dividing a fraction by a whole number	28
Calculating fractions of amounts	32
Week 3 – Decimals	36
Multiplying by 10, 100 and 1,000	36
Multiplying decimals	40
Dividing decimals	44
Decimals as fractions	48
Week 4 – Percentages	52
Converting fractions to percentages	52
Equivalent fractions, decimals and percentages (I)	56
Equivalent fractions, decimals and percentages (2)	60
Percentage of	64
Week 5 – Algebra	68
Finding a rule	68
Using a rule (I)	72
Using a rule (2)	76
Solving equations (I)	80

-(This tells you which page you need.

Week 6 – Algebra cont. Solving equations (2) Solving equations (3) Measure – imperial and metric measures Converting metric measures Miles and km	84 84 88 92 92 96
Week 7 – Measure – perimeter, area and volume Area and perimeter Area of a triangle Area of a parallelogram Volume of a cuboid	100 104 108 112
Week 8 – Ratio and proportion Ratio (I) Ratio (2) Similar shapes Solving problems involving ratio and proportion	116 116 120 124 128
Week 9 - Geometry - properties of shapes Vertically opposite angles Angles in triangles Angles in polygons (I) Angles in polygons (2)	132 136 140 144
Week 10 – Geometry – properties of shapes cont. Nets Parts of a circle Statistics Introducing pie charts The mean	148 148 152 156 156 160
Answers to Practice questions	164

The first page of a lesson is a maths problem. Don't look at the next page until you have had a go! The third and fourth pages give you practice, so you can check your understanding.

2

Multiplying a fraction by a whole number

Discover

- **D** a) The boat uses $\frac{1}{3}$ of a tank of fuel for each trip. How many tanks of fuel are used in a day?
 - b) What is the total duration of the boat trips in a day?

Share

a) Each trip uses $\frac{1}{3}$ of a tank of fuel.

There are 5 trips in a day.

$$\frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{5}{3} = \frac{2}{3}$$

$$\frac{1}{3} \times 5 = \frac{5}{3} = 1\frac{2}{3}$$

 $1\frac{2}{3}$ tanks of fuel are used in a day.

b) Each boat trip takes $1\frac{1}{4}$ hours and there are 5 trips a day.

I can multiply the whole and the fraction separately and then add them.

I will convert the mixed number to an improper fraction first.

Method 2

$$1\frac{1}{4} = \frac{5}{4}$$

$$\frac{1}{4} \times 5 = \frac{5}{4} = 1\frac{1}{4}$$
 $\frac{5}{4} \times 5 = \frac{25}{4}$

$$\frac{5}{4} \times 5 = \frac{25}{4}$$

$$5 + 1\frac{1}{4} = 6\frac{1}{4}$$
 $\frac{25}{4} = 6\frac{1}{4}$

$$\frac{25}{4} = 6\frac{1}{4}$$

The total duration of the boat trips in a day is $6\frac{1}{4}$ hours.

Multiplying a fraction by a whole number

(1) a) Work out $\frac{1}{4} \times 7$.

b) Work out $\frac{2}{5} \times 4$.

c) Work out $\frac{2}{3} \times 6$.

$$\frac{2}{3} \times 6 = \boxed{} = \boxed{}$$

2 Work out these multiplications.

a)
$$\frac{1}{2} \times 7 = \frac{1}{100} = \frac{1}{100}$$

c)
$$\frac{3}{8} \times 6 = \boxed{\boxed{}}$$

b)
$$\frac{4}{5} \times 3 = \frac{1}{100} = \frac{1}{100}$$

)
$$\frac{7}{10} \times 5 = \boxed{} = \boxed{}$$

3 Work out $1\frac{3}{5} \times 3$ in two different ways.

and

$$1\frac{3}{5} = \frac{}{5}$$

$$\frac{3}{5} \times 3 = \boxed{}$$

So
$$l\frac{3}{5} \times 3 =$$

4 Work out these multiplications.

b)
$$2\frac{1}{3} \times 8$$

5 Kate says $\frac{2}{3} \times 4 = \frac{8}{12}$. What mistake has Kate made?

Multiplying a fraction by a fraction

Discover

- Bella and Amal are making flapjacks.
 - a) They have $\frac{1}{2}$ a bag of oats. They need to use $\frac{1}{2}$ of the oats in the bag. What fraction of a whole bag do they need to use?
 - b) They have ³/₄ of a block of butter.
 They need ½ of this to make the flapjack.
 What fraction of a whole block do they need to use?

Multiplying a fraction by a fraction

- Zac is baking cookies.
 - a) The bag of flour is $\frac{1}{4}$ full. He uses $\frac{1}{2}$ of the flour in the bag. What fraction of the whole bag does Zac use?

$$\frac{1}{2} \times \frac{1}{4} =$$

Zac uses of the bag of flour.

b) The bag of chocolate chips is $\frac{1}{2}$ full. Zac needs $\frac{3}{4}$ of the chocolate chips.

What fraction of the whole bag does he need?

Zac needs of the bag.

2 a) Complete the diagram to work out $\frac{1}{5} \times \frac{1}{3}$.

 $\frac{1}{5} \times \frac{1}{3} = \boxed{\phantom{\frac{1}{5}}}$

b) Complete the diagram to work out $\frac{2}{3}$ of $\frac{2}{5}$.

× = =

3 Draw diagrams to help you work out these calculations. Give each answer in its simplest form.

 $a) \frac{3}{4} \times \frac{2}{5} = \boxed{}$

Dividing a fraction by a whole number

Discover

- a) The jug is $\frac{4}{5}$ full of juice.

 The juice is divided equally between the 2 empty cups.

 What fraction of the original jug is in each of these cups?
 - b) $\frac{q}{10}$ of the jar of baby food will be enough for 3 equal meals. What fraction of the jar of baby food should be put into each bowl?

Dividing a fraction by a whole number

This circle is divided into twelfths.

4 of the twelfths can be divided into 2 equal groups.

How many twelfths are there in each group?

twelfths in each group. There are

Write this as a division.

$$\frac{4}{12} \div 2 = \boxed{}$$

Use the diagrams to help you work out the divisions.

$$\frac{4}{q} \div 2 =$$

$$\frac{q}{10} \div 3 =$$

$$\frac{8}{q} \div 2 = \boxed{ }$$

3 Work out these divisions.

a)
$$\frac{10}{11} \div 5 =$$

b)
$$\frac{4}{5} \div 4 = \frac{1}{100}$$

Write a calculation for this diagram.

5 Work out these divisions.

a)
$$\frac{5}{9} \div 5 =$$

c)
$$\frac{6}{7} \div 2 = \frac{1}{100}$$

b)
$$\frac{3}{4} \div 3 = \frac{1}{1}$$

d)
$$\frac{8}{15} \div 2 = \frac{1}{15}$$

6 Complete these number sentences.

$$\alpha) \quad \frac{ }{5} \div 2 = \frac{1}{5}$$

c)
$$\frac{14}{15} \div \boxed{} = \frac{2}{15}$$

c)
$$\frac{14}{15} \div \boxed{ } = \frac{2}{15}$$
 d) $\frac{40}{45} \div \boxed{ } = \frac{4}{45}$

$$\frac{2}{5} \div 2 = \frac{2}{5}$$

$$\frac{14}{15} \div \bigcirc = \frac{7}{15}$$

$$\frac{40}{45} \div \boxed{ } = \frac{5}{45}$$

b)
$$\frac{20}{20} \div 3 = \frac{2}{20}$$

$$\frac{14}{15} \div \boxed{} = \frac{1}{15}$$

$$\frac{40}{45} \div \boxed{ } = \frac{20}{45}$$

$$\frac{20}{20} \div 3 = \frac{5}{20}$$

$$\frac{14}{15} \div \boxed{} = \frac{14}{15}$$

$$\frac{40}{45} \div \boxed{} = \frac{8}{45}$$

Calculating fractions of amounts

Discover

- a) The apples are shared into the baskets equally. How many apples will the Year 6 children get?
 - b) The Year 6 children eat $\frac{3}{10}$ of their apples in the morning and the remaining apples in the afternoon.

How many apples do they eat in the afternoon?

32

Lesson 4			

Calculating fractions of amounts

There are 48 buttons in a box. $\frac{5}{6}$ of the buttons are red and the rest are blue.

48 buttons

How many buttons are blue?

2 Andy won £720 in a competition. He gave $\frac{1}{3}$ of the money to his sister.

How much money did he have left?

3 Kate and Ebo each bake 60 cookies for charity. Kate sells $\frac{2}{3}$ of her cookies. Ebo sells $\frac{7}{12}$ of his cookies.

Who sells more cookies? How many more?

A box of chocolates costs £4·80. Sofia pays $\frac{4}{5}$ and Holly pays the rest. How much more does Sofia pay than Holly?

5 Work out these calculations.

a) $\frac{q}{10}$ of 170 km = km

c) $\frac{1}{7}$ of 0.35 km =

b) $\frac{1}{5}$ of 3 hours =

I wonder if I can change the units in parts b) and c).

