Contents

	1
Week I - Fractions	4
Simplifying fractions	4
Comparing and ordering fractions	8
Adding and subtracting fractions (I)	12
Adding and subtracting fractions (2)	16
Neek 2 – Fractions cont.	20
Multiplying a fraction by a whole number	20
Multiplying a fraction by a fraction	24
Dividing a fraction by a whole number	28
Calculating fractions of amounts	32
Neek 3 – Decimals	36
Multiplying by 10, 100 and 1,000	36
Multiplying decimals	40
Dividing decimals	44
Decimals as fractions	48
Neek 4 – Percentages	52
Converting fractions to percentages	52
Equivalent fractions, decimals and percentages (I)	56
Equivalent fractions, decimals and percentages (2)	60
Percentage of	64
Neek 5 – Algebra	68
Finding a rule	68
Jsing a rule (I)	72
Jsing a rule (2)	76
Solving equations (I)	80

- (This tells you which page you need.

Week 6 – Algebra cont. Solving equations (2) Solving equations (3) Measure – imperial and metric measures	84 84 88 92
Converting metric measures Miles and km	92 96
Week 7 – Measure – perimeter, area and volume Area and perimeter Area of a triangle Area of a parallelogram Volume of a cuboid	100 100 104 108 112
Week 8 – Ratio and proportion Ratio (I) Ratio (2) Similar shapes Solving problems involving ratio and proportion	116 120 124 128
Week 9 – Geometry – properties of shapes Vertically opposite angles Angles in triangles Angles in polygons (I) Angles in polygons (2)	132 132 136 140 144
Week IO – Geometry – properties of shapes cont. Nets Parts of a circle Statistics Introducing pie charts The mean	148 148 152 156 156 160
Answers to Practice questions	164

The first page of a lesson is a maths problem. Don't look at the next page until you have had a go! The third and fourth pages give you practice, so you can check your understanding.

Finding a rule

Discover

- More pairs of geese land. What is the rule for the number of geese on the lake?
 - b) Is Richard correct?

Share

Geese at the

7 + 2 = 9

 $7 + 1 \times 2 = 9$

7 + 2 + 2 = 11

 $7 + 2 \times 2 = II$

7 + 2 + 2 + 2 = 13

 $7 + 3 \times 2 = 13$

7

7 + 2 + 2 + 2 + 2 = 15 $7 + 4 \times 2 = 15$

7 7 7

Start'''More pairs
fly inI23100nTotal geese $7 + 1 \times 2$ $7 + 2 \times 2$ $7 + 3 \times 2$ $7 + 100 \times 2$ $7 + n \times 2$

7

If n more pairs land on the lake, there will be $7 + n \times 2$ geese in total.

The letter *n* is used here as the letter *x* would look like the multiplication sign. I wonder if that is confusing in algebra.

You can write 2n instead of $2 \times n$ or $n \times 2$.

This rule can be written 7 + 2n.

b) No, Richard is not correct because there will never be exactly 100 geese. The rule adds on a multiple of 2 to 7, so the answer will always be an odd number.

Lesson 1		

Finding a rule

Week	1	2	3	5	10	Ш
Total savings	28					

b) Complete the rule for how much Olivia has saved after y weeks.

After y weeks, Olivia has saved	+	\bigcap_{\times}	pounds
riter y weeks, ourra nas savea		1 10	I pourius

2 Max has £50 in the bank. Each week he spends £4 on a comic.

Complete the table and the rule.

	£50

Week	- 1	2	3	5	10	n
Money left						

After n weeks, he has \times pounds left.

3 Here is a growing pattern of triangles made from sticks.

In a growing pattern, there is a rule for how it grows each time.

Complete the table.

Number of triangles	1	2	3	4	5	10	100
Number of sticks used							

Write the rule for the number of sticks needed to make n triangles.

To make I triangle, sticks are used.

To make 2 triangles, sticks are used.

To make 3 triangles, sticks are used.

To make *n* triangles, ______ sticks are used.

Ebo makes this pattern of houses. What is the rule for the number of sticks needed for a pattern with g houses?

For g houses, you need ______ sticks.

Using a rule 🕕

Discover

- a) If Jamilla has x badges, how can the number of badges that Mo and Danny have be represented?
 - b) How many badges do Mo and Danny have if Jamilla has 4 badges?

Lesson 2		

Using a rule **①**

- Richard has x pet guinea pigs. Luis has 2 more than Richard. Ambika has 3 times as many as Luis.
 - a) Complete the rule for how many pets Luis has.

(x	2
Number of	Luis's pets

If Richard has x guinea pigs, Luis has guinea pigs.

b) Draw a bar model to represent how many guinea pigs Ambika has.

5			

c) Calculate the number of guinea pigs for Ambika, if Richard has 3 quinea pigs.

4			

Ambika has guinea pigs.

d) Complete the table.

		Num	ber of guined	a pigs	
Richard	Î	2	5	10	20
Luis	3				
Ambika	q				

2 Complete the table of inputs and outputs from each function machine.

Do you agree? Compare the outputs in the table.

Input	Ī	2	5	100	1,000	а
Output for – I0						
Output for + 5 – I5						

Using a rule 2

Discover

(I) a) Complete the table.

Write the rule for n stars.

How many points will you have for Level I if the value of *n* is I3?

b) What happens to the score if the value of *n* increases by I0 to 23?

Number of 🧽	Points for Level I
1	
2	
3	
4	
n	

Share

When $5 \times n$ is written as 5n, it is called an **expression**.

When a specific value is given for *n*, you **substitute** the value for *n* into the rule. So here you substitute 13 for *n*.

If the value of n is 13, that means 13 stars have been collected.

The rule is 5n which means $5 \times n$ or $n \times 5$.

When n = 13, $5n = 5 \times 13$.

 $5 \times 13 = 65$

If the value of n is 13, you will have 65 points.

b) Now n = 23.

Method I Method 2

Work out 5×23 . $5 \times 20 = 100$

 $5 \times 3 = 15$

If n = 23, you will have II5 points.

If n increases by I0, that means I0 more stars have been collected. So the number of points will increase by I0 \times 5.

If n = 23, the score will be 65 + 50 = 115 points.

Lesson 3		

Using a rule 2

Reena has a pile of 5 pence coins.

a) Write the rule for the total value when the number of coins is n.

There are n 5 pence coins. The total value = pence.

b) Complete the table for different values of *n*.

Number of coins	Reena's total value
4	5p × 4 = p
5	
10	
30	
50	

- 2 To hire a squash court costs 20 pence per minute.
 - f a) Write the rule for hiring the court for n minutes.
 - b) Complete the table.

Time in minutes	Cost
n	20 p × n =n
10	× 10 =
30	
60	

3 Calculate the result for different values of x by completing the table.

	x + 30	30 <i>- x</i>	30 <i>x</i>
<i>x</i> = 5			
x = 10			
x = 30			
x = 0			

Aki has to substitute x = 7 into 10x + 5.

I can work this out by finding 7 + 5 first, then multiplying by 10.

Does this work?

Explore and explain.

5 Explain how to choose values of *y* for the following rule, so that the result is a multiple of IO.

100 - 5y

Solving equations **()**

Discover

- a) What is the mystery weight? Explain how knowing this helps you solve the equation x + 36 = 42.
 - b) Solve the equation 36 + x = 42.

Solving equations **()**

Complete and solve the equations.

x + 25 = 40

Subtract	from each scale
x =	

b)

3c =

0	each side by	
c = [\neg	

c)	а	45
	10	0

a + 45 = 100

d	d d	d	d
	150		

2 Match each model with the correct equation, then solve.

с	
50	25

25 = 5c

25 + c = 50

c)

c - 25 =

3 Solve each equation.

a) 40 - f = 37

$\overline{}$	$\overline{}$
1	
1	
1	

d) 4,000 - i = 3,

750		
,750	1	
		_

b) g + 37.5 = 40

e)
$$4.4 = 40.4 - j$$

c) 400 = h + 37

f)
$$4k = 4$$

